The first mammalian aldehyde oxidase crystal structure: insights into substrate specificity.
نویسندگان
چکیده
BACKGROUND Aldehyde oxidases have pharmacological relevance, and AOX3 is the major drug-metabolizing enzyme in rodents. RESULTS The crystal structure of mouse AOX3 with kinetics and molecular docking studies provides insights into its enzymatic characteristics. CONCLUSION Differences in substrate and inhibitor specificities can be rationalized by comparing the AOX3 and xanthine oxidase structures. SIGNIFICANCE The first aldehyde oxidase structure represents a major advance for drug design and mechanistic studies. Aldehyde oxidases (AOXs) are homodimeric proteins belonging to the xanthine oxidase family of molybdenum-containing enzymes. Each 150-kDa monomer contains a FAD redox cofactor, two spectroscopically distinct [2Fe-2S] clusters, and a molybdenum cofactor located within the protein active site. AOXs are characterized by broad range substrate specificity, oxidizing different aldehydes and aromatic N-heterocycles. Despite increasing recognition of its role in the metabolism of drugs and xenobiotics, the physiological function of the protein is still largely unknown. We have crystallized and solved the crystal structure of mouse liver aldehyde oxidase 3 to 2.9 Å. This is the first mammalian AOX whose structure has been solved. The structure provides important insights into the protein active center and further evidence on the catalytic differences characterizing AOX and xanthine oxidoreductase. The mouse liver aldehyde oxidase 3 three-dimensional structure combined with kinetic, mutagenesis data, molecular docking, and molecular dynamics studies make a decisive contribution to understand the molecular basis of its rather broad substrate specificity.
منابع مشابه
Crystal structure of glucooligosaccharide oxidase from Acremonium strictum
Introduction Sugar oxidases and dehydrogenases that catalyze carbohydrate oxidation into the corresponding lactones are of considerable commercial importance. Glucooligosaccharide oxidase (GOOX) from Acremonium strictum was screened with the aim of identifying enzymes with potential applications such as an oligosaccharide acid production and various alternative carbohydrate assays. Screening of...
متن کاملDirect comparison of the four aldehyde oxidase enzymes present in mouse gives insight into their substrate specificities
Mammalian aldehyde oxidases (AOXs) are molybdo-flavoenzymes which are present in many tissues in various mammalian species, including humans and rodents. Different species contain a different number of AOX isoforms. In particular, the reasons why mammals other than humans express a multiplicity of tissue-specific AOX enzymes is unknown. In mouse, the isoforms mAOX1, mAOX3, mAOX4 and mAOX2 are p...
متن کاملSite Directed Mutagenesis of Amino Acid Residues at the Active Site of Mouse Aldehyde Oxidase AOX1
Mouse aldehyde oxidase (mAOX1) forms a homodimer and belongs to the xanthine oxidase family of molybdoenzymes which are characterized by an essential equatorial sulfur ligand coordinated to the molybdenum atom. In general, mammalian AOs are characterized by broad substrate specificity and an yet obscure physiological function. To define the physiological substrates and the enzymatic characteris...
متن کاملHuman liver aldehyde oxidase: differential inhibition of oxidation of charged and uncharged substrates.
HUMAN LIVER ALDEHYDE OXIDASE (ALDEHYDE: O(2) oxidoreductase, EC 1.2.3.1) has been purified 60-fold and some of its properties studied. Like aldehyde oxidase from other mammalian species, human liver aldehyde oxidase is an enzyme with dual substrate specificity, possessing the ability to catalyze not only the oxidation of aldehydes to the corresponding carboxylic acids, but also the hydroxylatio...
متن کاملIdentification of Crucial Amino Acids in Mouse Aldehyde Oxidase 3 That Determine Substrate Specificity
In order to elucidate factors that determine substrate specificity and activity of mammalian molybdo-flavoproteins we performed site directed mutagenesis of mouse aldehyde oxidase 3 (mAOX3). The sequence alignment of different aldehyde oxidase (AOX) isoforms identified variations in the active site of mAOX3 in comparison to other AOX proteins and xanthine oxidoreductases (XOR). Based on the str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 287 48 شماره
صفحات -
تاریخ انتشار 2012